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Abstract
Socioeconomic resources have long been associated with children’s language development.
Several proximal factors have been suggested as candidate mechanisms underlying
socioeconomic disparities in language development, including differences in the home language
environment and home noise levels. These experiences may in part shape auditory discrimination
skills, a key component of language comprehension. To index early auditory discrimination,
researchers measure brain function in relation to the detection of different sounds with an event-
related potential (ERP) called the mismatch response (MMR). The current study aimed to
examine associations among socioeconomic circumstances, the home language environment,
home noise exposure, and the MMR in a socioeconomically, racially, and ethnically diverse
longitudinal sample of 6- and 12-month-old infants. Socioeconomic circumstances were
measured prenatally via parent report. The home language environment and home noise levels
were measured using digital language processing devices when infants were approximately 6
months of age. The MMR was elicited during a passive auditory oddball task at two timepoints:
6 and 12 months of age. Results showed that neither SES, the home language environment, nor
home noise levels predicted infant MMR at either age. These findings add to a growing body of
literature examining the role of distal and proximal factors in shaping infant brain activity related

to language development.



Family socioeconomic status (SES), typically indexed by family income-to-needs ratios,
parent education level, and/or ratings of subjective social status, is consistently associated with
disparities in language outcomes (Fernald et al., 2013; Lee & Burkam, 2002; Noble et al., 2015).
Such disparities may emerge early in indices of neural processing, with SES shaping infant
responses to speech and environmental input (Tomalski & Johnson, 2010; Stevens et al., 2009).
These associations are likely driven by more proximal factors within children’s environments,
such as characteristics of the home language environment (Gilkerson et al., 2018; Caskey et al.,
2014; Rowe et al., 2012; Zimmerman et al., 2009) and noise exposure levels (Maxwell & Evans,
2000; White-Schwoch et al., 2015).

Children from families with greater socioeconomic resources generally are exposed to
home language environments with more adult words and more frequent conversational turns
(Hart & Risley, 1995, Rowe et al., 2012, Merz et al., 2020). These characteristics of the home
language environment are linked to both language outcomes (Rowe et al., 2012) and neural
structure and function that support language development (Pace et al., 2017, Romeo et al., 2018a,
Romeo et al., 2018b, Merz et al., 2020). In contrast, children from families with fewer
socioeconomic resources are more likely to experience fewer opportunities for parent-child
interaction or learning experiences (Schwab & Lew-Williams, 2016) and higher environmental
noise levels (Casey et al., 2017), all of which have been associated with worse language
development (Perkins et al., 2013; Schwab & Lew-Williams, 2016; Erickson & Newman, 2017).
Consistent with the broader literature showing that early neurocognitive mechanisms contribute
to later language (Riva et al., 2017), everyday language exposure may strengthen infant auditory
encoding and discrimination, which in turn may shape neural indices that support early language

development.



Notably, it has been theorized that higher levels of environmental noise, defined as
unwanted or unattended sound (Erickson & Newman, 2017), may also interfere with auditory
processing abilities (Newman et al., 2009; Evans et al., 2002). This might be particularly
detrimental for infants, as higher home noise levels may render fewer opportunities to clearly
hear and engage in linguistic exchanges that would contribute to the development of auditory
processing. Increased exposure to noise has been shown to degrade auditory discrimination in
children (Neimitalo-Haapola et al., 2015) and has been linked to characteristics of brain regions
that support language development and processing (Simon et al., 2022). However, no studies
have examined whether naturally occurring home noise levels relate to infants’ auditory
discrimination abilities.

Auditory discrimination—the ability to detect subtle differences in speech sounds—is an
essential component of language development (Kujala, 2007). At the neural level, auditory
discrimination can be assessed using event-related potentials (ERPs) such as the mismatch
response (MMR). The MMR is commonly elicited using an auditory oddball paradigm where
individuals hear a series of frequent (“standard”) and infrequent (“deviant’) sounds that differ
slightly in specific acoustic features (e.g., frequency, pitch). Importantly, the standard and
deviant sounds typically vary only slightly by acoustic feature, allowing the difference in neural
response to the deviant versus the standard (i.e., the MMR) to reflect the neural ability to detect
small deviations in physical characteristics, thus indexing auditory discrimination (Kujala &
Naatanen, 2010). In older children, adolescents, and adults, the MMR often appears as a negative
deflection and is commonly referred to as the mismatch negativity (MMN). However, in infancy
and early childhood, this response typically shows a positive deflection and is thus referred to as

the mismatch response (MMR; Benasich et al., 2006; Choudhury & Benasich, 2011; Garcia-



Sierra et al., 2016). Because the MMR indexes automatic detection of subtle acoustic changes, it
is well suited for capturing experience-based differences arising from variation in early language
and noise exposure.

The MMR is thought to reflect automatic auditory change-detection processes generated
primarily in the auditory cortex and frontal regions (Nééténen et al., 2007; Garrido et al., 2009).
In adults, the response occurs from the brain’s predictive coding mechanisms, in which the
auditory system forms expectations based on expected sound patterns and produces an MMR
when a deviation violates expectations. In infants, the positive MMR is believed to reflect an
earlier form of this mechanism, potentially reflecting maturational differences in cortical
organization, synaptic density, and excitation-inhibition balance within the auditory cortex (He et
al., 2009; Kushnerenko et al., 2002). As such, although polarity of the MMR differs across
development, both responses index the neural ability to discriminate and encode changes in
auditory input, processes that support early language learning (Cheng et al., 2015; Friederici et
al., 2007, Kujala 2007, McWeeny & Norton, 2020). Variations in children’s environments, such
as differences in language input, have been associated with differences in MMR amplitude and
latency (Garcia-Sierra et al., 2016; Marklund et al., 2019). Further, MMR amplitude in children
has been associated with both concurrent (Holopainen et al., 1997; Grossheinrich et al., 2010;
Norton et al., 2021) and subsequent (Choudhury & Benasich, 2011; Schaadt et al., 2015; Fan et
al., 2023) language skills in children (see Kujala & Leminen, 2010 for a review). Similarly,
evidence suggests that early rapid auditory processing abilities in infancy may mediate genetic
influences on expressive language development (Riva et al., 2018), underscoring the role of early

auditory neural processing in shaping language outcomes.



Links between language exposure and MMR amplitude have been observed, with infants
exposed to more speech displaying larger (i.e., more positive) MMR amplitudes (Garcia-Sierra et
al., 2016; Marklund et al., 2019). Past work has also observed smaller (i.e., less positive) MMRs
when elicited in noisy environments in adults (Kozou et al., 2005; Koerner et al., 2016) and
children (Niemitalo-Haapola et al., 2017), but no work has examined how the MMR might differ
in relation to variations in ambient everyday noise exposure. Socioeconomic circumstances have
been linked to differences in the MMR, though evidence is mixed, with some studies reporting
that lower subjective social status in young adults was associated with more negative MMRs
(Hao & Hu, 2024), and others finding no relationships between SES and the MMR in school-age
children (Anwyl-Irvine et al., 2021). Importantly, no studies have examined associations
between SES and the MMR in infancy. Similarly, no work has examined how SES and everyday
experiences, including conversational turns, adult word counts, and ambient noise levels, might
shape infant auditory processing. Further, it remains unknown as to whether the home language
environment and noise exposure might mediate associations between SES and early auditory
discrimination as reflected by the MMR. Examining whether these factors predict early auditory
discrimination abilities can contribute to a better understanding of how early experiences shape
neural function related to later language development.

As such, the current longitudinal study aimed to examine associations among SES, the
home language environment, home noise levels, and the MMR during two timepoints in infancy.
We hypothesized that (1) infants from lower SES homes, (2) those engaged in fewer
conversational turns and (3) those exposed to fewer adult words would all exhibit smaller (less
positive) MMRs. We also hypothesized that infants from homes with higher home noise levels

would exhibit smaller (less positive) MMRs. Lastly, we hypothesized that the home language



environment (adult word counts and conversational turn count) and home noise levels would
mediate associations between socioeconomic circumstances and the MMR.

Methods
Participants

Mothers were recruited from local prenatal clinics, community events, and social media
to participate in a longitudinal study on child development. Participants were from the New York
City metropolitan area and were recruited to span a range of educational attainment, from having
less than a high school education to holding an advanced degree. Mothers were recruited over
two time periods because of a temporary interruption in data collection due to the COVID-19
pandemic. A total of 209 mothers were enrolled in the longitudinal study after completing the
prenatal visit, with 93 recruited between June 2019 and March 2020 (Cohort 1) and 116 recruited
between August 2021 and September 2022 (Cohort 2). To participate, mothers were required be
18 years of age or older, speak English or Spanish, be carrying a singleton fetus with no known
neurological or developmental issues, and be at least 35 weeks pregnant. Once eligibility was
confirmed, mothers were invited to participate in a prenatal visit in our lab or their home.

After the birth of the infant, eligibility for successive study visits was confirmed for
subsequent participation. Inclusion criteria for infants included: gestational age greater than or
equal to 37 weeks and no known neurodevelopmental issues at birth. Mothers were contacted
every six months for follow-up visits. One mother-infant dyad was excluded from the study due
to birth-related complications, and five mothers unenrolled from the study by the time of contact
for the 6-month visit. Two-hundred and three mother-infant dyads were subsequently invited to
complete a lab or home visit when the infant was approximately 6 and 12 months of age. Of

these participants, 189 mother-infant dyads completed the six-month visit, virtually or in-person



(cohort 1: n = 84; cohort 2: n=105) and 178 completed the twelve-month visit, virtually or in-
person (cohort 1: n = 75; cohort 2: n = 103). Due to restrictions on in-person data collection
related to the COVID-19 pandemic, EEG collection was only possible for infants in cohort 2.
Measures
Family Socioeconomic Status

At the prenatal timepoint, mothers completed a questionnaire that assessed educational
attainment (total years of education for mother and father separately), household composition
(number of adults and children in household), and family income (estimated gross annual
income). Parent educational attainment was calculated by averaging the number of years of
education attained by the mother and the second parent. In cases where the reporting mother was
the sole parental caregiver, only maternal educational attainment was used. Parent educational
attainment for at least one parent was reported by all 209 mothers. Seventeen mothers selected
“prefer not to answer” for the family income question; therefore, income data were available for
192 mother-infant dyads (i.e., 92% of the full sample). Family income-to-needs (ITN) ratios
were calculated by dividing participants’ total household income by the U.S. poverty threshold
for the respective family size for the year of data collection. An ITN below 1 indicates that a
family is living below the federal poverty threshold, whereas an ITN above 1 indicates that a
family is living above the federal poverty threshold. Fifty-two mothers (i.e., approximately 27%
of the sample who provided income data) reported an ITN of below the poverty line. As
expected, ITN values were positively skewed and subsequently log-transformed for use in all
analyses. Fourteen participants reported that their income was zero dollars. To enable log
transformation, one dollar was added to all income values prior to calculating I'TN to account for

reported family income of zero dollars. Three ITN values were detected as outliers (defined as



values greater than 3 standard deviations above the mean), and as such results with ITN as the
independent variable of interest were run with both winsorized and non-winsorized values. We
report analyses using winsorized values below; (see Supplemental Table 2 for results using non-
winsorized ITN values.
Infant Demographic Factors

Infant demographic factors, including assigned sex, race, and ethnicity were collected
from mothers via questionnaire at the 1-month time point. Thirteen mothers selected “prefer not
answer” on the item that assessed infants’ race, and 5 mothers selected “prefer not to answer” on
the item that assessed infants’ ethnicity. Further, one parent selected “prefer not to answer” when
selecting infant assigned sex at birth.
Home Language Environment

The Language ENvironment Analysis (LENA) digital language processor (LENA
Research Foundation, Boulder, CO) was used to measure the home language environment.
LENA is an automated vocalization analysis device that can audio-record the child’s language
environment for up to 16 hours. At the 6-month visit, participants who agreed to take part in the
LENA activity were given the device along with two infant T-shirts and instructions on use (i.e.,
mothers were instructed to have the infants wear the T-shirt with the LENA device turned on
inside the pocket for a whole day, removing it when the baby was napping for comfort). The
research team also advised mothers to complete this activity on a day when they spend most of
the time with their infant (e.g., a weekend day).

Once returned, audio recordings from the device were downloaded and analyzed using
LENA software. This software provides several automated measures including: the number of

words a child hears from an adult (Adult Word Count or AWC); the number of conversational
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turns (i.e., a child utterance followed by an adult utterance within 5 seconds, or vice versa;
referred to as the Conversational Turn Count or CTC); the number of child vocalizations (i.e.,
child’s speech of any length surrounded by > 300 milliseconds of silence or any other sound not
produced by the child (Child Vocalization Count or CVC); the number of seconds the child is
exposed to electronic media (i.e., TV, iPad); and background noise. High validity and reliability
of the LENA speech identification algorithms have been reported for adult and infant speech
(Gilkerson et al., 2017), both in English and in Spanish (Weisleder & Fernald, 2013). Relevant to
the current study, hourly adult word count, hourly conversational turn count, and noise levels
were extracted from the LENA.

Further data processing took place to remove silent periods of 10 minutes or more from
recordings, in order to ensure that LENA analyses were limited to times in which the infant was
awake. To remove these silent periods, custom Python scripts (see
github.com/trollerrenfr/LENA_Scripts) were used. Segments were removed from the data when
they consisted of two consecutive five-minute periods in which the LENA automatic algorithm
detected one or more of the following: 1) there was noise or silence for more than 180 seconds;
2) there were no adult words detected; 3) there were no conversational turns detected; and 4)
there were fewer than 10 child vocalizations. With the remaining data, LENA counts were
divided by the duration of the LENA recording, to obtain average hourly counts of adult words
and conversational turns. Values were queried for outliers, with one hourly conversational turn
count identified as an outlier (> 3 standard deviations from the mean). As such, this value was
winsorized, and analyses using conversational turn count were run with both the original value
and the winsorized value. Of the 137 participants who consented to participate in the LENA

activity, 11 participants either lost the device or returned it without data. Recordings shorter than
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5 hours (n = 4) were excluded from subsequent analyses, leaving a sample size of 122 with
usable metrics for the home language environment and noise. Upon closer inspection of the raw
data, 5 participants exhibited device usage that spanned the course of multiple days (>2 days) or
repeated instances of turning the device on/off (>3 pauses of the device). As such, we ran
robustness checks in which analyses using LENA variables as a predictor were rerun with and
without these data.
Home Noise Levels

To calculate average home noise levels, LENA recording files for each participant were
entered into the LENA Advanced Data Extractor (ADEX; LENA Foundation, 2011). Using the
ADEX tool, LENA data were uploaded and average sound pressure level in decibels were
automatically extracted for each participant. One participant exhibited noise levels greater than 3
standard deviations from the mean; this value was winsorized.
Child Bilingualism Status

Bilingualism status was assessed at the 6-month timepoint via maternal report. Parents
were asked what language was mainly spoken in the home, followed by a question regarding
how often that language was spoken. Possible answers were "Mostly", "Almost Always", and
"About half the time". Mothers were also asked whether children were exposed to any other
languages. Answers to this question were then dummy coded, with a 'l' coding any level of
bilingualism, and a '0' coding no exposure to another language in the home. In our full sample of
209 infants, 52 infants were classified as bilingual and 134 infants were classified as
monolingual, with 23 infants missing bilingualism information.

ERP Task (cohort 2 only)
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EEG collection occurred at both the 6- and 12-month timepoints for infants who attended
an in-person visit. Prior to ERP data collection, infants participated in a 3-minute baseline EEG
task to measure neural activity at rest. During ERP acquisition, infants were held in their
mothers’ arms in a dimmed room while completing a 2-stimulus auditory oddball paradigm (a
frequent, standard stimulus and infrequent, deviant stimulus) to elicit an MMR. Stimuli were
computer-generated at 48 kHz, 16-bit resolution consonant-vowel syllables /ba/ and /da/. Stimuli
were presented using a task structure of 666 stimuli (566 or 85% standard stimuli; 100 or 15%
deviant stimuli), following task structures of Dr. April Benasich (Rutgers University Newark).
Speech sounds were selected to elicit MMR due to prior work suggesting that the MMR in
response to speech sounds are more closely to later language outcomes compared to the MMR
elicited by tonal stimuli (Fox et al., 2024, Norton et al., 2021; Alonso-Bua et al., 2006; Neuhoff
et al., 2012). This specific stimulus contrast was selected as it represents an acoustically subtle
yet meaningful contrast in both the English and Spanish, the two dominant languages heard by
infants in our sample. This contrast has been widely used in infant ERP studies and has been
shown to reliability elicit an MMR (Uhler et al., 2021). Stimuli were presented in a sound-
attenuated environment using E-Prime software (Psychology Software Tools). Each stimulus
was presented for 100 ms at 70 dB SPL and the interval between sound onsets was 1020 ms,
following the specifications of similar tasks (Ortiz-Mantilla et al., 2019). All deviant stimuli
were preceded by at least 3 and at most 10 standard stimuli, and stimuli were presented in the
same sequence for each infant. A soundless infant video played in the background for children to
attune to visually. Mothers were instructed by research assistants to talk and interact with their
infant as little as possible during ERP data collection.

Electroencephalography Data Acquisition and Processing (cohort 2 only)
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EEG was recorded using a 128-channel montage HydroCel Geodesic Sensor Net (Magstim
Electrical Geodesic Inc., Eugene, OR, USA) and on a Net Amps 400 amplifier. Whenever
possible, all electrode impedances were kept below 50 kQ. The sampling rate was 1000 Hz and
data were online referenced to the vertex (Cz) electrode.

Offline processing was completed using the EEGLAB toolbox (version 2023.1; Delorme
& Makeig, 2004), MATLAB (Version R2021b; The MathWorks, Natick, MA), and the
Maryland analysis for Developmental EEG (MADE) pipeline (Debnath, Buzzell, et al., 2020).
Prior to filtering, the outermost ring of electrodes (i.e., electrodes located near the base of the
skull: 17, 38, 43, 44, 48, 49, 113, 114, 119, 120, 121, 125, 126, 127, 128, 56, 63, 68, 73, 81, 88,
94, 99, 107) were removed because these electrodes tend to have poor connections and are
highly susceptible to noise in infant samples (Debnath et al., 2020). Data were then high-pass
filtered at 1 Hz and low-pass filtered at 15 Hz, following previous developmental work
(Kushnerenko et al., 2007; Musacchia et al., 2013). A 1 Hz high-pass cutoff is common in
developmental EEG to reduce drift and movement artifacts, though it may attenuate slower ERP
components such as the MMR (Luck, 2014; Widmann & Schréger, 2012). Bad channels were
identified and removed using the EEGLAB plug-in FASTER (Nolan et al., 2010). Ocular
artifacts and generic noise were removed by creating a copy of the dataset and performing
independent component analysis (ICA) on the copied data. The copied dataset was high pass
filtered at 1 Hz and segmented into arbitrary 1000 ms epochs. Epochs were removed from this
copied dataset if the amplitude was 1000 pV or if power in the 20—40 Hz band (after Fourier
analysis) was greater than 30 dB (Brito et al., 2020; Troller-Renfree et al., 2020). If more than
20% of the epochs in a given channel were removed, that channel was excluded from both the

ICA-copied dataset and the original dataset (Debnath et al., 2019; Troller-Renfree et al., 2020).
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Following this, ICA (Comon, 1994; Makeig et al., 1997) was performed on the copied dataset
and the ICA weights were copied back to the original continuous data (high pass filtered at

1 Hz). The adjusted-ADJUST toolbox (Leach et al., 2020) was used to automatically identify
artifactual independent components (ICs) in the original dataset. All artifactual ICs were
removed from the data. Next, data were epoched into 900 ms segments that started 100 ms
before sound onset.

After ICA artifact removal and epoching, a two-step procedure for identifying residual
artifacts was used. First, to ensure ocular artifacts were removed, epochs where any of the frontal
electrodes (i.e., 1, 8, 14, 21, 25, 32) exceeded a voltage threshold of £150 pV were rejected from
all further analyses. Second, for any epoch in which non-ocular channel voltages exceeded +150
uV, we interpolated these channels at the epoch level. However, if more than 10% of channels
exceeded £150 puV, we rejected the epoch. Additionally, if all epochs were deemed artifactual for
an infant (i.e., more than 10% of channels were interpolated on every epoch), that infant was
excluded from subsequent processing (ERP data at 6-months removed n = 1; ERP data at 12
months removed n= 2). Finally, we interpolated all missing channels using a spherical spline
interpolation and then referenced the data to the average of all the electrodes.

ERPs for each child were averaged separately for each condition and baseline-corrected
to the average voltage in the 100 ms pre-stimulus period.

As described above, EEG data collection was only possible for infants in cohort 2 who
participated in an in-person visit at 6 or 12 months (n = 116 in cohort 2; n = 89 who completed
an in-person 6-month visit; n = 94 who completed an in-person 12-month visit), following the

lifting of pandemic-related research restrictions.
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At 6-months of age, 78 children completed the EEG oddball task. EEG data were not
collected from eleven infants due a technical error during EEG recording (n = 2) or because it
was not possible to collect the data (n = 9; due to either child fussiness or parent refusal).
Altogether, of the 78 participants who completed the MMR task, one participant’s data was
excluded during preprocessing due to not having enough usable data (i.e., fewer than 20 artifact-
free trials), leaving 77 participants with complete and usable MMR data at the 6-month
timepoint.

At 12 months of age, 80 children completed the oddball task. EEG data were not
collected from 12 infants due to the baby being fussy or mom declining the measure. Altogether,
of the 80 participants who completed the task at 12 months, 76 participants had complete and
usable MMR data at the 12-month timepoint. Between the two timepoints at which EEG data
was collected, 61 had data at both 6- and 12-month timepoints.

Mismatch Response (MMR)

Based on visual inspection of the grand-averaged data and consistent with prior work
examining associations between the MMR and language outcomes (Campos et al., 2023), neural
responses to standards and deviants were quantified as the average activity across a frontal left
cluster of channels (electrodes E20, E24, E28, E27, E34, E40) from 200 to 350 ms post-stimulus
onset. We then computed the MMR by subtracting neural responses to standard stimuli from
neural responses to deviant stimuli (deviant minus standard). To determine the minimum number
of trials needed to obtain reliable estimates of the MMR, we examined Cronbach’s o as a
function of an increasing number of deviant and standard trials.

The internal consistency reliability of the MMR at 6-months was low (0=.05) at 20 trials

(the cutoff for usability in the current study). The internal consistency reliability of the MMR



16

remained low (a < .50) at extended trial thresholds: 30 (a=".14), 40 (0=.10), 50 (0=.25) and 60
(0=.22) trials. Similarly, the internal consistency reliability of the MMR at 12 months was
generally poor across different trial thresholds: a=.25 at 20 trials; .33 at 30 trials, .37 at 40 trials,
.30 at 50 trials and .39 at 60 trials. While low, these reliability values are similar to those
observed in other child samples (Uwer & von Suchodoletz, 2000; Martin et al., 2008). The
number of participants dropped significantly after calculating Cronbach’s alpha for 60 trials
(only 37 participants had more than 70 trials at 6-months; only 42 participants had more than 70
trials at 12 months). To confirm our results across usability thresholds, robustness checks were
run at both timepoints using different trial cut-offs in analyses examining predictors of the
MMR.

Procedure

All protocols in this study were conducted in accordance with the ethical standards set by the
Declaration of Helsinki. Informed consent was obtained from all participants, and procedures
were approved by the Institutional Review Board of Teachers College, Columbia University. For
this study, data were collected from mothers and infants at four time points: prenatally, at 1
month, at 6 months, and at 12 months. At the prenatal visit, mothers either visited the research
laboratory or research assistants visited their home to collect data which, pertinent to the current
analyses, included mother demographic information and questions related to parent education
and household income and composition. At the 1-month visit, which occurred either remotely or
in-person, infant demographic information was reported. At the 6- and 12-month visit, mother-
infant dyads either completed study activities remotely due to the COVID-19 pandemic (cohort
1) or were invited to participate in an in-person lab visit, with an option for remote visit when

necessary (cohort 2). Families from both cohorts were invited to participate in the LENA activity
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for additional compensation at the 6-month visit. All families received instructions on how to
complete the LENA activity and were provided with mailing materials to return the device back
to the lab. The MMR was elicited in infants in cohort 2 by recording EEG during a passive
oddball task during the 6- and 12-month visit.
Analytic Samples

Altogether, analytic samples varied depending on variables of interest within each model,
with SES and LENA data collected across both cohorts, and EEG data collected only for infants
in cohort 2. Analyses examining SES and LENA outcomes had 115 observations when
examining ITN as a predictor (cohort 1 n = 41; cohort 2 = 74) and 122 observations when
examining parent education as a predictor (cohort 1 n = 46; cohort 2 n =76). When examining
SES and the MMR at 6 months of age, 74 observations had both ITN and MMR, and 77
observations had both parent education and MMR. At 12 months of age, 74 observations had
both ITN and MMR, and 76 had both parent education and the MMR. When examining LENA
variables as a predictor of the MMR at 6 months of age, 59 participants had usable data. When
examining LENA variables as a predictor of the MMR at 12 months of age, 57 participants had

complete data.

Statistical Plan

All analyses were conducted in SPSS (Version 29) and R Statistical Software. For
descriptive purposes, we examined potential cohort differences in demographic variables. Next,
we calculated Pearson’s r to examine bivariate correlations among study variables of interest

(See Table 2). Multiple linear regressions were performed to examine our research questions. To
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test potential mediation effects, bias-corrected bootstrapping via the PROCESS macro was
conducted, with a 95% confidence interval (Hayes, 2013).

First, we examined whether prenatal family socioeconomic circumstances (family ITN
and average parent education level, examined in separate models) predicted differences in the
magnitude of the MMR at 6 and 12 months of age. Next, we examined whether prenatal family
socioeconomic circumstances predicted characteristics of the home language environment (adult
word count and adult-child conversational turns) at 6-months of age. We then examined whether
characteristics of the home language environment (examined in separate models) were associated
with MMR magnitude at 6 and 12 months of age. Consistent with contemporary mediation
frameworks, we did not require a statistically significant total effect of SES on the MMR to test
mediation, as indirect pathways may exist even in the absence of a direct association (Hayes,
2013). Accordingly, we tested whether either adult word count or conversational turns mediated
associations between SES variables (family ITN and parent education level) and MMR
magnitude at either timepoint.

Next, we tested whether prenatal socioeconomic status (examined in separate models)
was associated with home noise levels, followed by examining whether home noise levels were
associated with the magnitude of the MMR at 6 and 12 months of age. Finally, we examined
whether average home noise levels mediated any associations between either SES variable
(family income and parent education) and the magnitude of the MMR at either timepoint.

All analyses controlled for child age (in months) and sex (dummy coded: 1 = female; 0 =
male). For analyses with the MMR as the outcome variable, child bilingual status (dummy
coded: 0 = no exposure to a second language in the home; 1 = any exposure to a second

language; see Measures section for additional information) was also used as a covariate. For
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analyses examining the home language environment and home noise levels, device recording
time (in hours) was used as a covariate. Cohort number (dummy coded 0 = Cohort 1; 1 = Cohort
2) was also used as a covariate for analyses predicting the home language environment and home
noise levels. Mediation analyses controlled for child age at the time of EEG visit, child sex, child
bilingual status, and LENA recording time.
Sensitivity analyses

Robustness checks included repeated analyses in which we used non-winsorized family
ITN as predictor, (see Table S1 for results), additionally controlled for family ITN, parent
education, and child ethnicity (See Table S2 for results). We additionally ran robustness checks
for analyses predicting the MMR in which we included number of usable deviant trials after
preprocessing as an additional covariate (See Table S3 for results). Finally, we reran models to
examine predictors of the MMR, incrementally increasing the cutoff for usable data by 10 usable

deviant trials at a time (See Tables S4.1-S4.5 for results).

Results

Descriptive statistics

Table 1 shows the characteristics of the full sample. See Supplementary Table 1 for
characteristics for those with usable EEG data at either timepoint (n = 92). We examined
potential sociodemographic differences between dyads in cohort 1 (n=93) and those in cohort 2
(n=116). Participants in cohort 2 reported higher family income (M= $199,906, SD = $361,417; t
(190) = 1,97; p = .05) and higher parent education levels (M=15.5 years, SD = 3.27,t (207) =
2.45; p=.013) compared to cohort 1 (Mean family income = $115,304.65, SD = $168,677.53;

mean parent education level=14.3 SD = 3.31). Additionally, there were more children identified
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as Hispanic/Latinx in cohort 1 (n = 49) compared to children in cohort 2 (n=37) (¥*(2) =10.61; p
=.005). No cohort differences were found in regard to child race (%> (5) = 8.82; p = .12) or child
bilingual status (z (184) =1.10; p = .27).

[Table 1]
Table 2 shows pairwise correlations between SES, LENA measures, and MMR magnitude.

[Table 2]
ERP Grand Average

Figure 1 displays grand-average stimulus-locked ERPs in response to standard and

deviant sounds, and the difference between them (deviant minus standard) at both timepoints.
Topographic maps depicting voltage across the scalp for the standard response, deviant response,
and MMR (deviant minus standard) are depicted in Figure 2. As depicted in Figure 1, the mean
amplitude of the neural response to deviant stimuli at both timepoints was larger (i.e., more
positive) than that of the standard stimuli (6-month timepoint: # (76) = 5.68, p < .001; 12-month
timepoint: ¢ (75) = 5.12, p <.001) during our time period of interest (200-350 ms post stimulus
onset). The mean amplitude of the MMR did not differ by infant age at visit, sex at birth, race, or
ethnicity at either timepoint (all ps > .05). At 12 months of age, mean amplitude was associated
with child bilingual status in that bilingual children showed a reduced MMR magnitude ¢ (70)=-
1.94, p = .05.

[Figure 1]

[Figure 2]

Association between prenatal socioeconomic status and the MMR amplitude
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Controlling for child age, sex, and child bilingual status, neither family ITN (8 =.04; p =
.77) nor parent education (3 = -.05; p =.70) predicted MMR mean amplitude at 6-months of age.
Similarly, neither family ITN (3 = -.003; p = .98) nor parent education (= .06; p = .64)

predicted MMR mean amplitude at 12 months of age.

Association between socioeconomic status and characteristics of the home language
environment.

Controlling for child age, sex, device recording time, and cohort number, higher family
ITN (B =.36 p <.001) and higher parent education ( = .25 p = .008) were associated with a
higher average hourly adult word count. Both higher family ITN (B =.33; p <.001) and higher
parent education (B = .33; p <.001) were also associated with higher average hourly
conversational turn count. When running these models without the infants whose LENA
recordings had more than 3 pauses or spanned over 2 days (n=5 dropped from analytic sample of
those with LENA and SES data), results remained similar: higher ITN and higher parent
education predicted higher average hourly word count (ITN: f=.36; p <.001; Parent Education:
B =.25; p=.008), and higher average hourly conversational turn count (ITN: = .33, p <.001;
Parent Education: § =.32; p <.001).

Associations between socioeconomic status and home noise levels.

Controlling for child age, sex, conversational turns, cohort, and device recording time,
neither family ITN ( = .06; p = .51) nor parent education levels (f = -.10; p = .30) were
significantly associated with home noise levels. When removing the 5 participants with LENA
data containing more than 3 pauses or spanning more than 2 days, results remained similar; ITN:

(B =.04; p = .71); parent education: (= -.08; p = .38).
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Associations between characteristics of the home language environment and the MMR

Controlling for child age, sex, device recording time, and child bilingual status, neither
hourly adult word count (B=-.03; p = .85) nor conversational turn count (§ =.14; p = .31) were
associated with the magnitude of the MMR at 6-months of age. Results remained similar when
excluding infants whose LENA recordings had more than 3 pauses or spanned over 2 days (n=1
dropped from analytic sample of those with LENA and MMR at 6-month timepoint).

Using the same covariates, neither conversational turn count (B =.07; p = .64) nor hourly
adult word count were associated with the magnitude of the MMR at 12 months of age (B =-.14;
p =.31). Results remained similar when excluding participants without infants whose LENA
recording had more than 3 pauses or spanned 2 or more days (n=1 dropped from analytic
sample).

Associations between home noise levels and the magnitude of the MMR

Home noise levels were not associated with the magnitude of the MMR at either
timepoint, controlling for child age, sex, device recording time, bilingualism, and average hourly
conversational turn count, (6-month MMR: 3 =-.10; p =.52; 12-month MMR: 3 = .06; p =.72).
When running these models without the infants whose LENA recordings had more than 3 pauses

or spanned over 2 days (n=1 dropped from analytic sample), results remained similar.

Mediation Results

Although SES was not directly associated with the MMR at either timepoint, mediation
analyses can still be informative, as indirect effects may occur in the absence of a total effect
(Hayes, 2013; Hayes 2018; Hayes 2022). As such, we continued with our original statistical plan

and examined potential indirect effects between SES and the MMR at both timepoints through
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the home language environment and home noise levels. Contrary to our hypotheses, no
significant indirect effects were observed for either mediator. For the home language
environment, the 95% bias-corrected bootstrapped confidence intervals for all indirect paths
included zero (parent education and 6-month MMR: [95% CI: -.01, .19]; family ITN and 6-
month MMR: [95% CI: -.03, .18]; parent education and 12-month MMR: [95% CI: -.07, .10];
family ITN and 12-month MMR: [95% CI: -.05, .11]). The same was true for home noise levels
(parent education and 6-month MMR: [95% CI: -.04, .04]; family ITN and 6-month MMR: [95%
CI: -.07, .07 ]; parent education and 12-month MMR: [95% CI: -.05, .04]; family ITN and 12-
month MMR: [95% CI: -.08, .09]).
Sensitivity Analyses
Results remained similar when using non-winsorized family ITN as a predictor (see
Supplemental Table 2), when controlling for supplemental covariates, including parent education
and ITN, child ethnicity, and number of deviant trials (See Supplemental table 3 and 4). Results
also remained consistent when testing associations with increasing trial cutoffs (See
Supplemental Tables 5.1-5.5)
Discussion

The present study adds to a growing body of literature investigating factors that might
predict brain function related to auditory discrimination in infancy. We examined whether
socioeconomic factors (i.e., family income-to-needs ratios and parent education), characteristics
of the home language environment (i.e., adult word count and adult-child conversational turns),
and home noise levels might predict the magnitude of the mismatch response (MMR), an ERP
commonly used to index auditory discrimination, at two timepoints in infancy. We further

examined whether the home language environment or home noise levels would mediate
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associations between SES and the MMR at either timepoint. SES was not associated with the
MMR at either timepoint. Similarly, neither metric of the home language environment (hourly
conversational turn count or adult word count), nor home noise levels predicted MMR magnitude
at either timepoint.

While this is among the first studies to look at SES, the home language environment, and
home noise exposure in relation to the MMR within the same sample, prior work has examined
different components of these research questions. Although some work has found associations
between SES and the MMR, directionality has been mixed. One study of infants aged 6-14
months found evidence that lower SES was associated with reduced amplitude of the N2, an ERP
which can often overlap with the MMR and reflects the automatic detection of unexpected
stimulus change (Wienke & Mathes, 2024). Other work, however, has found evidence of more
negative MMRs in adults who retroactively reported growing up in lower-SES households (Hao
& Hu., 2024). In contrast, we found no associations between SES and MMR amplitude in our
sample. One potential explanation for these differences might be differences in how SES was
conceptualized in each study. For example, Wienke & Mathes (2024) utilized parent education
level (dichotomously rated as “low” or “high”) and migration background as their proxy for SES,
while Hao & Hu (2024) used participant retrospective ratings on the MacArthur Scale of
Subjective Social Status as a proxy for childhood SES. Our study, in contrast, used two
continuous indices of SES: average parent education in years and family ITN. As such, it is
possible that these differences in results between studies are due to differences in how SES was
measured. Future studies in which multiple dimensions of SES are measured from the same
sample are warranted to best understand the potential associations between socioeconomic

circumstances and the MMR.
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Turning to the home language environment, we similarly did not find associations
between home language environment and the MMR at either timepoint. This is in contrast to
prior work in which language input predicted the MMR in older infants (Garcia-Sierra et al.,
2016). In that study, bilingual 11- and 14-month-old infants who experienced high language-
input showed a larger, more positive MMR when listening to tones in their native language,
indicative of stronger discrimination response between stimuli (Garcia-Sierra et al., 2016). From
these findings, we predicted that both adult word count and conversational turn count would be
associated with the MMR. Notably, Garcia-Sierra and colleagues examined only the number of
adult words during LENA recording segments reported to have the highest adult word counts. In
contrast, the current study examined both average adult word count and conversational turn
count across the entire recording. These indices were selected to capture a more accurate
estimate of the infant’s typical exposure to language across the entire day (excluding periods of
sleep), rather than relying on brief periods of high language activity that may overestimate
language input. Further, Garcia-Sierra and colleagues did not examine conversational turn
counts, which we included given previous work linking conversational turns with both language
development and neural processing (Garcia-Sierra, 2016). It is possible these analytic differences
may explain discrepancies in findings across studies.

Characteristics of the home language environment have been associated with neural
structure (Merz et al, 2020; Romeo et al, 2018) and function (Romeo et al., 2018; Brito et al.,
2019) supporting language development, making language input a key predictor of early
neurobiological mechanisms that support language. We hypothesized that both conversational
turn count and adult word count would predict differences in MMR amplitude, with stronger

associations for conversational turn count, given that conversational turns require active
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engagement by the child. However, we saw no association between either index of the home
language environment and MMR mean amplitude at either timepoint of interest. In contrast to
the study by Garcia-Sierra and colleagues, in which bilingual and monolingual children were
examined separately, the current study grouped bilingual and monolingual children together for
analysis, utilizing binary labels of monolingual/bilingual as a covariate. It is important to
consider bilingual status (i.e., bilingual, monolingual) when examining the MMR with linguistic
stimuli, as the magnitude of the MMR has been shown to differ depending on whether stimuli
are from native or non-native speech-sounds. Future work may also benefit by taking into
account varying degrees of multilingualism when examining home language input and early
indices of auditory discrimination.

Finally, we did not find evidence that noise levels in the home were associated with
MMR amplitude. It is possible that such associations may not appear until later in childhood. It is
also possible that other indices of neural function are instead affected by noise levels, such as
brain structure, or other ERP components. Recent work has suggested that it is may not be noise
levels per se that are associated with language development, but rather speech-to-noise ratios
(Benitez-Barrera, et al., 2025). Prior studies examining brain function in the context of noisy
environments have found reduced MMRs while in noisy conditions (Kozou et al., 2005). In
contrast, our study elicited the MMR in quiet conditions, instead focusing on noise levels
recorded in the home environment. It is possible that children with higher noise levels at home
do not differ from those with lower noise levels at home under quiet conditions, but instead
might show differences under noisy contexts. Future studies should incorporate the use of

different noise-related metrics (e.g. speech-to-noise ratios) and examine the MMR under varying
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conditions to more fully capture how noise might shape language development and underlying
brain function.

Taken together, discrepancies between the current null findings and prior reports linking
SES, language input, or noise exposure to the MMR may also reflect differences in ERP
methodology across studies. Prior studies examining the MMR have differed across several
criteria: the characteristics of the auditory stimuli, the level of difference between the deviant and
standard stimuli, and the age of the study sample, each of which may shape the observed
associations. Differences across studies highlight that the absence of SES-, home language
environment—, or noise-related effects on the MMR in the present study may not necessarily
indicate the absence of such effects in infancy. Rather, discrepancies may stem from differences
in how the MMR is measured, as well as from variations in stimulus characteristics that can
influence characteristics of the ERP.

While among the first studies to examine predictors of the MMR at multiple timepoints in
infancy, this study is not without limitations. Our ERP exhibited poor internal consistency
reliability at both timepoints. While common when eliciting ERPs from young populations,
variation in the MMR between trials may contribute to the inability to detect predictors of the
MMR across participants. Unfortunately, few other studies examining the MMR in infancy and
early childhood have reported on reliability metrics, rendering it difficult to compare the
reliability of our data to other studies using similar paradigms. To address this issue, toolboxes
such as the READIE toolbox have been developed to facilitate easy incorporation and reporting
of internal consistency reliability statistics of EEG/ERP data (Xu et al., 2024). Incorporating
these metrics is crucial for improving the field’s understanding of ERP measures, as it allows

researchers to assess the stability and consistency of their findings across trials and participants.
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Without such reporting, it can be difficult to determine whether observed effects reflect true
neural responses or are influenced by measurement variability. By adopting reliability reporting,
future work can enhance comparability across datasets, improve replication efforts, and
strengthen conclusions drawn from infant and child ERP research.

Further, our study was limited by a smaller sample than originally planned due to data
collection restrictions related to the COVID-19 pandemic. As a result, the study may have been
underpowered to observe the small to moderate effect sizes often observed when predicting
neural measures broadly (Clayson et al., 2019). Additionally, after restrictions were lifted, a new
cohort of infants was recruited, with families in the second cohort notably reporting significantly
higher income and parent education levels. Given that only infants in the second cohort
contributed to the ERP data used in this study, demographic differences between cohorts
possibly influenced our findings and limit their generalizability. Data collection on both cohorts
is ongoing and data across both cohorts will examined together at later study timepoints (e.g., 24-
months, 36-months), increasing statistical power and socioeconomic diversity of the sample.
Finally, although we only analyzed the MMR as our neural outcome, the development of other
ERP components such as the N2 or P2 may also be sensitive to SES- and experience-related
differences in auditory processing (Kushnerenko et al., 2002; Stevens et al., 2009). Future work
incorporating multiple ERPs will be important for clarifying how distinct aspects of auditory
function develop in relation to SES, the home language environment, and home noise levels.

Despite these limitations, and although our hypotheses were not borne out, the present
findings provide preliminary evidence and contribute to emerging longitudinal research
examining associations among socioeconomic factors, the home language environment, home

noise levels, and the MMR in a diverse sample of infants at two timepoints. Future studies
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should employ larger samples to ensure statistical power and to robustly examine how different
aspects of the home language environment might shape early neural development. Continuing to
examine these and related factors over time will be critical to advancing our understanding of

how early experiences influence brain and language development.
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Tables and Figures
Table 1. Full Sample Characteristics
M SD Range Minimum Maximum
Infant age (in months) at 6-month EEG visit 6.78 95 5.23 5.23 10.47
Infant age (in months) at 12-month EEG visit 12.6 94 5.03 11.28 16.31
Infant age (in months) at LENA completion 7.46 1.16 5.67 5.40 11.07
Parental education (years) 15.00 3.33 16.00 6.00 22.00
Family income-to-needs ratio 6.85 8.84 43.74 0 43.74
Family income (in USD) 163,334 29,6379 2,563,500 0 2,563,500.00
Number of usable standard trials: 6 months 425 99 405 155 566
Number of deviant trials: 6 months) 74 18 77 23 100
MMR mean amplitude: 6 months (LV) 1.81 2.74 15.06 -5.78 9.28
Number of usable standard trials: 12 months 428 118 442 124 566
Number of deviant Trials: 12 months 75 21 75 25 100
MMR mean amplitude: 12 months (uV) 1.59 2.64 13.05 -5.23 7.83
% n

Infant Sex Male 41.1% 86

Female 51.2% 107

Prefer not to answer 0.5% 1

Missing/Unknown 7.2% 15
Infant Ethnicity

Hispanic or Latino 41.1% 86

Not Hispanic or Latino 48.3% 101

Prefer not to answer 2.4% 5

Missing/Unknown 8.1% 17
Infant Race

White 34.9% 73

Black or African American 22.0% 46

Asian 3.8% 8

American Indian/Alaska Native 1.0% 2

Other 23.9% 50

Prefer not to answer 6.2% 13

Missing/Unknown 8.1% 17
Bilingual Status

Monolingual household 64.1% 134

Bilingual household 24.9% 52

Unknown/Missing 11.0% 23




Table 2. Correlation Table
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1 2 3 4 5 6 7 8 9 10 11 12
1. Mismatch Response (MMR), 6 months --
2. Mismatch Response (MMR), 12 months 03 -
3. Family Income-to-Needs (In) 02 .00 --
4. Parent education (years) -04 .07  .54%F -
5. Hourly Adult Word Count 03  -13 357 28%k __
6. Hourly Conversational Count A8 .04 317 32%k 51%x
7. Hourly Child Vocalization Count 20 05 13 14  -04 .66%* --
8. Average Noise Level (dBs) -12 .11 05 -10 .02 .20%% 34%* -
9. Recording time (hours) -30° .07 -27**-30 -13  -17  -10  34%x .
10. Infant age when first MMR collected -11 -05 .16* 01 -08 -07 .09 .01 -01 --
11. Infant age when second MMR collected -02 -08 .05 -08 -05 -00 -01 .00 .01  .52%* -
12. Infant age when LENA collected 08 -15 .10 -04 -16 -04 .08 .04 .08 .55%* 23* -

* Correlation is significant at the .05 level.
** Correlation is significant at the .01 level.
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Figure 1
Grand Average ERPs.
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Note. ERPs were scored at an average of the frontal-left electrode cluster (channels E20, E24, E27, E28, E34, and E40) at 6- (left) and

12- (right) months of age. Highlighted area indicates ERP time window extracted for analysis (200-350 ms).
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Figure 2
Topographic maps at 6 months (top) and 12 months (bottom).
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Note. Topographic maps depict voltage across the scalp in the time window of the MMR (200 to 350 ms) for the standard(a,d),
deviant(b,e), and difference between standard and deviant stimuli (c,f). Electrodes from which MMR amplitude was extracted are

circled.
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Supplemental Materials

Table S1. Descriptive of children with EEG outcomes at either 6- or 12-months (n=92)

M SD Range Minimum Maximum
Infant age (in months) at LENA completion 7.10 1.02 5.36 5.32 10.68
Parental education (years) 15.45 3.16 16.00 6.00 22.00
Family income-to-needs ratio 6.85 8.84 43.74 0 43.74
Family income (in USD) 214,880 395,589 2,563,500 0 2,563,500
% n

Infant Sex

Male 45.7 42

Female 52.2 48

Missing/Unknown 2.2 2
Infant
Ethnicity Hispanic or Latino 34.8 32

Not Hispanic or Latino 59.8 55

Prefer not to answer 33 3

Missing/Unknown 2.2 2
Infant Race

White 41.3 38

Black or African American 28.3 26

Asian 4.3 4

American Indian/Alaska Native 0 0

Other 16.3 15

Prefer not to answer 7.6 7

Missing/Unknown 2.2 2
Bilingual
Status Monolingual household 73.9% 68

Bilingual household 22.8% 21

Unknown/Missing 3.3% 3




48

Table S2. Associations when using non-winsorized family income-to-needs (ITN) values as a predictor.

As stated in the main text, three ITN values were detected as outliers and were winsorized prior to analysis. As such, results were run
with and without winsorized ITN values, with results using winsorized values described in the main text. Results using non-
winsorized ITN values are described below. All other covariates remained the same.

Summary of standardized beta and significance levels for supplemental analyses examining non-winsorized ITN values as
predictor variable of interest.

Outcome Variable: B p-value

Home Language Environment

Adult World Count 35 <.001
Conversational Turn Count .30 .002
Home Noise Exposure .05 57
MMR Magnitude (6-months) .04 .99
MMR Magnitude (12-months) .04 73

Similar to results in the main analyses, ITN predicted both adult word count and conversational turn count. ITN did not predict home
noise exposure nor MMR magnitude.
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S3. Predicting the MMR when controlling for additional covariates: ITN, ethnicity and parent education.

As stated in the main text, cohorts differed by ethnicity, family income, and parent education levels. As such, we reran analyses
predicting the MMR (only collected in cohort 2) at both timepoints with ethnicity, family income, and parent education as covariates
(both SES variables were run in the same model, with ethnicity added as a covariate). In analyses in which both cohorts had data
collected, cohort was already included as a covariate in the model, and as such was not included as a covariate in this set of robustness
checks. All other covariates remained the same for each model (see note).

Table S3. Summary of standardized betas in supplemental analyses examining associations between 1) SES, 2) the home language
environment, and 3) home noise levels, and MMR magnitude at 6- and 12-months when additionally controlling for ethnicity, ITN,
and parent education.

6-month MMR 12-month MMR
Predictor Variable B p-value B p-value
SES
ITN 12 .39 .09 .56
Parent Education -.01 .94 -.01 .94
Home Language Environment
Adult World Count -.01 93 -.17 25
Conversational Turn Count 16 23 .06 .69
Home Noise Exposure -.14 34 -.08 .63

Note. All models were run separately and also controlled for covariates mentioned in the main text (i.e., child age, gender, bilingual
status for all models, device recording time for the home language environment and home noise exposure, and hourly conversational
turn count for home noise exposure).
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S4. Associations when additionally controlling for number of usable trials.

As a robustness check, we reran analyses predicting the mismatch response (MMR) at both timepoints additionally controlling for
number of usable trials, results generally remained similar.

Table S4. Summary of standardized betas in supplemental analyses examining associations between 1) SES, 2) the home language
environment, and 3) home noise levels, and MMR at both timepoints when additionally controlling for number of deviant trials.

6-month MMR 12-month MMR
Predictor Variable B p-value B p-value
SES
ITN -.06 .68 01 .94
Parent Education -.16 25 .07 .62
Home Language Environment
Adult World Count -.03 81 -.16 24
Conversational Turn Count .02 .89 .02 .87
Home Noise Exposure -.09 54 .08 .63

Note. Each predictor listed was run in a separate regression model with all other covariates indicated in the main text (i.e., child age,
gender, and bilingual status for all models, plus total recording time for the home language environment and home noise variables,
plus conversational turn count for home noise exposure).
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SS. Associations with increasing trial cutoffs.
Given the relatively low reliability scores for the MMR at both timepoints (determined using Cronbach’s alpha, see main text), we
also tested associations using different trial cutoffs as a robustness check. All covariates remained the same in all analyses.

Table S5.1 Summary of standardized betas in supplemental analyses examining associations between 1) SES, 2) the home language
environment, and 3) home noise levels, and MMR using a cutoff of 30 usable deviant trials (n=2 MMR values dropped at 6-months; n
=3 MMR values dropped at 12-months)

6-month MMR 12-month MMR
Predictor Variable B p-value B p-value
SES
ITN .037 7 .04 78
Parent Education -.08 52 .03 81
Home Language Environment
Adult World Count -.04 77 -.14 34
Conversational Turn Count A3 33 .06 .66
Home Noise Exposure -.10 .56 .02 .90

Note: Each predictor listed was run in a separate regression model with all other covariates indicated in the main text (i.e., child age,
gender and bilingual status for all models, plus total recording time for the home language environment and home noise variables, plus
conversational turn count for home noise exposure).
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Table S5.2 Summary of standardized betas in supplemental analyses examining associations between 1) SES, 2) the home language
environment, and 3) home noise levels, and MMR using a cutoff of 40 usable deviant trials (n=6 MMR values dropped at 6-months; n
= 8 MMR values dropped at 12-months)

6-month MMR 12-month MMR
Predictor Variable B p-value B p-value
SES
ITN .06 .64 .02 .86
Parent Education -.07 .60 -.03 .80
Home Language Environment
Adult World Count 14 35 -.135 38
Conversational Turn Count A2 42 .01 .94
Home Noise Exposure -.11 52 .003 98

Note: Each predictor listed was run in a separate regression model with all other covariates indicated in the main text (i.e., child age,
gender, and bilingual status for all models, plus total recording time for the home language environment and home noise variables,
plus conversational turn count for home noise exposure)
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Table S5.3 Summary of standardized betas in supplemental analyses examining associations between 1) SES, 2) the home language
environment, and 3) home noise levels, and MMR using a cutoff of 50 usable deviant trials (n=9 MMR values dropped at 6-months; n

=11 MMR values dropped at 12-months)

6-month MMR 12-month MMR

Predictor Variable B p-value B p-value
SES

ITN .08 .56 015 91

Parent Education -.07 57 -.04 7

Home Language Environment

Adult World Count 22 15 -.13 .39
Conversational Turn Count A2 42 -.01 .96

Home Noise Exposure -.28 A2 -.01 94

Note: Each predictor listed was run in a separate regression model with all other covariates indicated in the main text (I.e., child age,
gender, and bilingual status for all models, plus total recording time for the home language environment and home noise variables,

plus conversational turn count for home noise exposure)
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Table S5.4. Summary of standardized betas in supplemental analyses examining associations between 1) SES, 2) the home language
environment, and 3) home noise levels, and MMR using a cutoff of 60 usable deviant trials (n=12 MMR values dropped at 6-months;
n =16 MMR values dropped at 12-months)

6-month MMR 12-month MMR
Predictor Variable B p-value B p-value
SES
ITN .16 22 -.06 .67
Parent Education -.06 .64 -.04 .79
Home Language Environment
Adult World Count 23 15 -.11 52
Conversational Turn Count A2 42 .008 .96
Home Noise Exposure -27 15 -.02 90

Note: Each predictor listed was run in a separate regression model with all other covariates indicated in the main text (I.e., child age,
gender, and bilingual status for all models, plus total recording time for the home language environment and home noise variables,
plus conversational turn count for home noise exposure)
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Table S5.5. Summary of standardized betas in supplemental analyses examining associations between 1) SES, 2) the home language
environment, and 3) home noise levels, and MMR using a cutoff of 70 usable deviant trials (n=20 MMR values dropped at 6-months;
n =26 MMR values dropped at 12-months).

6-month MMR 12-month MMR
Predictor Variable B p-value B p-value
SES
ITN .10 A48 -25 .07
Parent Education -.20 16 -.17 .26
Home Language Environment
Adult World Count 27 A1 -.09 .59
Conversational Turn Count 14 40 -.11 A48
Home Noise Exposure -.26 18 -.15 43

Note: Each predictor listed was run in a separate regression model with all other covariates indicated in the main text (i.e., child age,
gender, and bilingual status for all models, plus total recording time for the home language environment and home noise variables,
plus conversational turn count for home noise exposure)



